

MAR 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers�’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers �– and have been
contributed free of charge.
To find out more about ACCU�’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

What was, what is, and what
may be

ane was becoming increasingly confused. Since
joining her team, she�’d had a variety of little
�‘missions�’ to complete, all working towards the

release of a replacement product, and (she had to admit)
they�’d even been interesting missions, technologically
speaking. She�’d even felt she�’d had some influence on
the design of the new system. Nevertheless, she was
now finding it hard to escape a feeling of futility about it.
It seemed that the project was becoming bogged-down in
constantly re-visiting details of design that she (and her
colleagues, she felt sure) had already thought decided. No-one
had a very clear idea of how the different components should
communicate together, or even what those components
should be. There was no clarity on some fundamental
things like the domain types to be used, or the
persistence mechanism for them. In short, a lack of
concrete requirements. Oh sure, there was a broad
agreement about what the system should �‘do�’ �– it must be
be like the old system, but shinier and faster. And more
extensible.
She suspected it was this last part that was causing all the
trouble. Arequirements vacuum had inspired a universe of possibility in which all
things were possible. Instead of �‘just�’ replacing the existing system, it had to be able
to support other output styles, manipulate new data types, received from as-yet-non-
existent sources, all dynamically configurable (of course). The possibilities were
endless.
Yes. Jane was sure that was the problem. Instead of actually asking people what they
required, the project had become encumbered and paralysed by the dreams of what
might be.
The question now was �– what should she do about it?

 J
Volume 23 Issue 1
March 2011

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Stephen Baynes, Alexander
Demin, Pete Goodliffe, Paul
Grenyer, Richard Harris, Jon
Jagger, Frances Love, Chris
Oldwood, Roger Orr, Nat Pryce,
Matthew Wilson

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAR 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
20 Inspirational (P)articles

Frances Love introduces
Chris Oldwood.

21 Desert Island Books
Nat Pryce makes his
selection.

22 ACCU Regional Meetings
The spotlight falls on
London.

23 Code Critique
Competition #68
Set and collated by
Roger Orr.

REGULARS
27 Bookcase

The latest roundup of
book reviews.

28 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 23.2: 1st April 2011
C Vu 23.3: 1st June 2011

Overload 103:1st May 2011
Overload 104:1st July 2011

FEATURES
3 The First Little Step into Test-Driven Development

Alexander Demin takes a good look at Google Test.
8 Many-festos

Pete Goodliffe crafts one manifesto to rule them all.
9 A Game of Blockade

Baron Muncharris sets a challenge.
10 On a Game of Tug o�’ War

A student analyses the Baron’s latest puzzle.
11 Further Experiments in String Switching

Matthew Wilson finds adding requirements can be
agreeably easy.

13 Using the Windows Debugging API
Roger Orr reveals the magic of Windows debuggers.

18 What�’s in an name?
Stephen Baynes examines just how important a name is.

19 The Kanban Ones Game
Jon Jagger describes a game revealing team behaviour.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

MAR 2011 | | 3{cvu}

The First Little Step into Test-Driven
Development

Alexander Demin takes a good look at Google Test.

he software development world is changing rapidly �– new versions
of the operating systems, compilers, libraries are coming up faster
and faster. It�’s actually great. Lots of options allow you to choose the

development tools ideally fitting your personal requirements. Approaches
to developing good quality software are also changing all the time.
Nowadays the cool words in the programming world are object oriented
design, functional programming, extreme programming and of course test-
driven development (TDD).
Though I have more than ten years�’ experience of programming, and it
covers various languages from machine code and assembler up to
functional programming, I have discovered the test driven development
world quite recently. Programmers are often very conservative (and quite
lazy!) and they do not like to change their habits. I am a perfect example.
But when I stepped over my laziness and started to use TDD I felt that my
development became more predictable, more stable. I managed to split
complex tasks into pieces, and manage code interdependencies
significantly more easily and faster. More importantly: I have stopped
repeating my coding mistakes, reintroducing already fixed bugs and now
I am able to refactor my code anytime without any fear of breaking
something important a day before the release. Why? All thanks to test
driven development.
I would like to share my experiences on entering the wonderful world of
TDD and hope to encourage somebody to join.
My main background is C and C++, so I will cover these languages, but
all ideas mentioned are common for lots of modern languages (Java, C#,
Python, Delphi etc).
Let�’s start from the beginning. Usually the first program written by a
newbie is Hello World. Assume you have done it already and you want to
do something more complex.
Let�’s assume you studied a lot of computer science and you know how to
implement a very fast multiplication function. Listing 1 is what it might
look like.
I want to warn the reader that this particular example is not ideal in terms
of coding style and it�’s not clear in logic, it uses a lot of C/C++ �‘cool short�’

expressions and so on. Also the function has some weird line with 920 and
847. This is intentional, and will be covered later.
Now, you have done the code. You definitely know that it should work
more reliably and faster because your computer science background tells
you that. How can you make sure that it works correctly? The function code
is quite �‘non-understandable�’ and you cannot swear that it works correctly
just by looking on the source. You have to try it on. The first and the most
obvious way to create a simple example might be that shown in Listing 2.
Then you run it, play with it a bit, try a couple of examples and then come
to the conclusion that it works. Later you add the mult.cc file to your
project and probably delete the test example source because you do not
need it anymore. You have linked the function into your application and
you are almost happy.
Let�’s step back for a second now and imagine that unfortunately sometimes
your application gives a wrong result or perhaps crashes and you suspect
that the issue is your mult() function. You have to find your original test
source or even write it again because you have lost it, then run it again
under a debugger and try to find what the problem is. And now imagine
you have hundreds or thousands of similar functions in your application
and you have to re-test them all. It�’s a nightmare.
Well, let me show you another way �– the test driven development way.
We will use the excellent Google Test Framework 1.5.0 for that. You can
download and unpack it in your working directory:

wget http://googletest.googlecode.com/files/
gtest-1.5.0.tar.gz
gzip -dc gtest-1.5.0.tar.gz | tar xvf -

It will create gtest-1.5.0 directory in your current folder. We will
refer to this directory below so make sure that you use proper directory
names in your compilation commands.
Then you create the unit test (mult_unittest.cc, in Listing 3).

 T

ALEXANDER DEMIN
Alexander Demin is a software engineer with a PhD in
Computer Science. Constantly exploring new
technologies he is always ready to drill down into the
code with a disassembler to prove that the bug is out
there. He may be contacted at alexander@demin.ws.

// File: mult.h
#ifndef _MULT_H
#define _MULT_H
int mult(int a, int b);
#endif

// File: mult.cc
#include "mult.h"
int mult(int a, int b) {
 if (!a || !b) return 0;
 int r = 0;
 if (a == 920 && b == 847) r++;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Lis
tin

g 1

#include "mult.h"
#include <iostream>

int main(int argc, char* argv[]) {
 while(1) {
 std::cout << "enter a: ";
 int a;
 std::cin >> a;
 std::cout << "enter b: ";
 int b;
 std::cin >> b;
 std::cout << "a * b = " << mult(a, b)
 << std::endl;
 }
}

Listing 2

4 | | MAR 2011{cvu}

This file contains the simple test case. The meaning of it is explained
below.
Then the test main runner module (runner.cc, in Listing 4).
This runner will execute all declared tests in your test application. This
piece of code can be almost the same for any of your unit test suites. It just
parses the command line arguments and runs all tests.
Now let�’s compile it. If you are running Linux and have the GCC C++
compiler version 3 or later you can use the following command:
 g++ -Igtest-1.5.0/include -Igtest-1.5.0 -o
 mult_unittest gtest-1.5.0/src/gtest-all.cc
 mult.cc mult_unittest.cc runner.cc

The mult_unittest executable should be generated. Let�’s run it:
 ./mult_unittest

It prints something like this:
 [==========] Running 1 test from 1 test case.
 [----------] Global test environment set-up.
 [----------] 1 test from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [----------] Global test environment tear-down
 [==========] 1 test from 1 test case ran.
 [PASSED] 1 test.

Let�’s go back and look at it in more detail now. We have created a test case
named multTest.simple in the file mult_unittest.cc
(multTest is the test suite name and the simple is the test name in the
suite) which runs your function with 7 and 13 as the parameters and checks
that result is 91. The macro for the test declaration is TEST(...). The
magic happens in the EXPECT_EQ (...). This function call has two
arguments: the first one is the expected value and the second is the real
one. If they are equal the function passes through quietly but if they are
different it reports an error message.
The Google Test Framework provides a bunch of similar functions to
check various conditions with different argument types. The EXPECT_*
function family does not abort the test run. It just prints the report about a
test failure and keeps going to execute other tests. The ASSERT_*
functions (for example, ASSERT_EQ()) stop the test suite run and
terminate the runner. They are convenient when there is no reason to
continue testing on a fatal error (for example, a database is not available).
But in our case the test runner reports a successful test execution �– the test
case has been executed and the result is correct. That�’s fine but this test
case is so obvious and checks only one pair of numbers. You need more.
Because the mult() function has some weird checking of the argument
for zero at the beginning let�’s test it. You add one more test case �–
multTest.zero (File: mult_unittest.cc, Listing 5).
Let�’s compile with the same command and run mult_unittest
executable again. It should print this:

 [==========] Running 2 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 2 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [----------] Global test environment tear-down
 [==========] 2 tests from 1 test case ran.
 [PASSED] 2 tests.

The new test passes successfully as well and the mult() function seems
to handle checking the parameter for zero correctly. But we still have an
unsolved issue �– your application using the function mult() fails and it
means this function sometime returns wrong value. Let�’s add a stronger
test to file mult_unittest.cc (Listing 6).
This test (multTest.all) checks all possible values of arguments from
0 to 999. Let�’s compile and run it again:
 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [RUN] multTest.all
 mult_unittest.cc:18: Failure
 Value of: mult(a, b)
 Actual: 779241
 Expected: a * b
 Which is: 779240
 [FAILED] multTest.all
 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran.
 [PASSED] 2 tests.
 [FAILED] 1 test, listed below:
 [FAILED] multTest.all

 1 FAILED TEST

#include <gtest/gtest.h>
#include "mult.h"

TEST(multTest, simple) {
 EXPECT_EQ(91, mult(7, 13));
}

Lis
tin

g 3

#include <gtest/gtest.h>

int main(int argc, char **argv) {
 testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

Lis
tin

g 4

#include <gtest/gtest.h>
#include "mult.h"

TEST(multTest, simple) {
 EXPECT_EQ(91, mult(7, 13));
}

TEST(multTest, zero) {
 EXPECT_EQ(0, mult(0, 7));
 EXPECT_EQ(0, mult(7, 0));
}

Listing 5

#include <gtest/gtest.h>
#include "mult.h"

TEST(multTest, simple) {
 EXPECT_EQ(91, mult(7, 13));
}

TEST(multTest, zero) {
 EXPECT_EQ(0, mult(0, 7));
 EXPECT_EQ(0, mult(7, 0));
}

TEST(multTest, all) {
 for (int a = 0; a < 1000; ++a)
 for (int b = 0; b < 1000; ++b)
 EXPECT_EQ(a * b, mult(a, b));
}

Listing 6

MAR 2011 | | 5{cvu}

Wow! The test fails. It means we have found the problem. We see that in
line 18 of mult_unittest.cc there is a test failure: the expected value
is 779240 but the actual one is 779241. It�’s a great result, but we also need
to know which exact parameters cause this error. So let�’s modify the test
(Listing 7).
This code will also print the error message and the values of a and b on
failure. The EXPECT_EQ(...) can be used the output stream similar to
std::cout, for example, to print out the diagnostics on a test failure.
Compile and run it again. We should get the following result:

 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [RUN] multTest.all
 mult_unittest.cc:17: Failure
 Value of: mult(a, b)
 Actual: 779241
 Expected: a * b
 Which is: 779240
 wrong result on a=920 and b=847
 [FAILED] multTest.all
 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran.
 [PASSED] 2 tests.
 [FAILED] 1 test, listed below:
 [FAILED] multTest.all

 1 FAILED TEST

Now we know exactly that the function fails when a=920 and b=847. This
is the problem. And now we can fix the �‘problem�’ by removing the line
if a == 920 && b == 847) r++; from the mult.cc file. Listing
8 is an error free version of the main.cc.
Well, now compile it and run mult_unittest once again. Here is the
output:

 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [RUN] multTest.all
 [OK] multTest.all
 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran.
 [PASSED] 3 tests.

All tests work perfectly and now you are sure that your function mult()
is fully error free.
Let�’s analyse what we�’ve done. We have created the function mult()
and also the tests which can be used any time to prove its proper
functioning. At this point test driven development strongly recommends

you include the test build and execution into your project build. For
example, this is the part of your myapp project makefile:
 ...
 all: build

 build:
 cc -o myapp main.cc mult.cc

You should add the test compilation and run into this makefile:
 ...
 release: build test

 build:
 g++ -o myapp main.cc mult.cc

 test:
 g++ -Igtest-1.5.0/include -Igtest-1.5.0 -o
 mult_unittest gtest-1.5.0/src/gtest-all.cc
 mult.cc mult_unittest.cc runner.cc

 ./mult_unittest

Why do you need this? You need this because each time you release the
project (using release target) it will compile and run the test suite to make
sure that the current implementation of the mult() function is ok and
works as you expect.
Now imagine you want to check whether it is reasonable to use your own
hacky implementation of the simple arithmetic operation as the
multiplication. Let�’s run your test suite again using the command:
 ./mult_unittest --gtest_print_time
 --gtest_filter=multTest.all

We ask Google Test framework to print the test execution time and also
we ask to run only one test using the filter by name.
The output:

 Note: Google Test filter = multTest.all
 [==========] Running 1 test from 1 test case.
 [----------] Global test environment set-up.
 [----------] 1 test from multTest
 [RUN] multTest.all
 [OK] multTest.all (1266 ms)
 [----------] 1 test from multTest (1297 ms total)

 [----------] Global test environment tear-down
 [==========] 1 test from 1 test case ran. (1328
 ms total)
 [PASSED] 1 test.

It reports only one test run (testMult.all) and it takes 1279 ms on my
Core 2 Duo laptop (timing on your machine may be different).
Now you want to try another fairly simple implementation for the mult()
function (file mult.cc, in Listing 9).
Let�’s compile it using exactly the same command as we used for the first
implementation:

TEST(multTest, all) {
 for (int a = 0; a < 1000; ++a)
 for (int b = 0; b < 1000; ++b)
 EXPECT_EQ(a * b, mult(a, b))
 << "wrong result on a=" << a << " and
 b=" << b;
}

Lis
tin

g 7 #include "mult.h"

int mult(int a, int b) {
 if (!a || !b) return 0;
 int r = 0;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Listing 8

6 | | MAR 2011{cvu}

 g++ -Igtest-1.5.0/include -Igtest-1.5.0 -o
 mult_unittest gtest-1.5.0/src/gtest-all.cc
 mult.cc mult_unittest.cc runner.cc

and run it:
 ./mult_unittest --gtest_print_time
 --gtest_filter=multTest.all

The output should look like this:

 Note: Google Test filter = multTest.all
 [==========] Running 1 test from 1 test case.
 [----------] Global test environment set-up.
 [----------] 1 test from multTest
 [RUN] multTest.all
 [OK] multTest.all (1094 ms)
 [----------] 1 test from multTest (1141 ms total)

 [----------] Global test environment tear-down
 [==========] 1 test from 1 test case ran. (1171
 ms total)
 [PASSED] 1 test.

We see it takes only 1094ms on my laptop and it�’s faster than our original
handmade implementation.
Now you know that the original implementation is not quite so good and
may be optimized or replaced by a better one.
So what is that we have achieved by this entire exercise? What is the point
of it?
Firstly, we have created a test mechanism for our function. This
mechanism can be used at a later time to prove the function logic and it
can be fully automated. Once created it can be re-used as many times as
you want. You do not lose your efforts applied initially for creating the
testing routine.
Secondly, we have included the test run into the project build. If the
function logic is broken for some reason (you�’ve changed the code
accidentally or maybe the new version of the compiler has generated the
wrong code) the test will automatically point you towards it by failing the
build.
And thirdly, we tried two different implementations of the mult()
function using the same test suite. This means you can easily refactor the
code without any fear of breaking something. The tests will check the
function results and the expectations from the function. You have
determined the function behaviour via the test cases and from this point
you can easily play with the function implementation. On top of this we
have tested two different implementations for execution time and now we
have enough information to choose the better one.
These are really awesome results �– you have automated the error checking
procedure for your project. You do not need to do any manual runs
anymore, playing with parameters to make sure that everything works as
expected after any recent changes. Let�’s imagine how just a little extra
effort of writing a 5 minute test case (comparing to the original user
interactive test application) gave us so much additional information and
helped to create a better design for the application. It�’s definitely worth it.
There is probably an argument that in some cases testing can be tricky
because real world applications are much more complex than this isolated
example. That is 100% correct, however the answer to it is also very
simple: you have to write testable code from the beginning. Every time a
piece of code is done, ask yourself �– how will I test it? And maybe you

will write the code a bit more simply, a bit more split into simple sub-tasks,
a bit more isolated from external dependencies and so on. Definitely
writing testable code is a complicated issue and there are a lot of techniques
for it: dependency injection, isolating the business logic from the object
instantiation (operator new), using inheritance and polymorphism
instead of overly complicated if/switch constructions and so on and so
forth.
Of course I have referenced many things from the object oriented world
which make it easier to use unit testing. Applications with object oriented
design in most cases are quite easy to test but the classic procedural
languages like C or Pascal, for example, are not out of the question either.
Let�’s see how to test a similar example written in ANSI C. Your sources
are in Listing 10.
I will use another Google testing framework here �– cmockery 0.1.2. This
framework was designed to test C code and it�’s a very powerful
framework. On top of the set of assert_* functions it can help to find
memory leaks, and buffer under- and over-runs.
Let�’s get it:
 wget http://cmockery.googlecode.com/files/
 cmockery-0.1.2.tar.gz
 gzip -dc cmockery-0.1.2.tar.gz | tar xvf -

This command will create the cmockery-0.1.2 folder in your current
directory. We will use it so do make sure you do all runs below with this
as the current directory.
Let me show you the test suite with the same functionality but written in
C (mult_test.h in Listing 11 and mult_test.c in Listing 12), and
the runner (Listing 13).
Let�’s compile it with GCC version 3 or higher:
 gcc -Icmockery-0.1.2/src/google -o mult_test
 cmockery-0.1.2/src/cmockery.c mult.c mult_test.c
 runner.c

If everything is correct you should test mult_test executable. Let�’s run
it:
 ./mult_test

and it will print something like Listing 14.

#include "mult.h"
int mult(int a, int b) {
 return a * b;
}Lis

tin
g 9 // File: mult.h

#ifndef _MULT_H
#define _MULT_H
int mult(int a, int b);
#endif

// File: mult.c (buggy version)
#include "mult.h"
int mult(int a, int b) {
 int r = 0;
 if (!a || !b) return 0;
 if (a == 920 && b == 847) r++;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Listing 10

#ifndef _MULT_TEST_H
#define _MULT_TEST_H
void mult_simple_test(void **state);
void mult_zero_test(void **state);
void mult_all_test(void **state);
#endif

Listing 11

MAR 2011 | | 7{cvu}

The mult_all_test fails on line 19 and it reports that the expected
value of multiplication is 0xBE3E8 (decimal 779240 = 920 * 847) but the
actual one is 0xBE3E9 (decimal 779240). Now we fix the mult()
function removing buggy line if (a == 920 && b == 847) r++;,
giving Listing 15, an error-free version of mult.c., and run the test suite
again.

Now it prints this:
 mult_simple_test: Starting test
 mult_simple_test: Test completed successfully.
 mult_zero_test: Starting test
 mult_zero_test: Test completed successfully.
 mult_all_test: Starting test
 mult_all_test: Test completed successfully.
 All 3 tests passed

We see now all three tests work fine. Of course C-based unit testing is not
as advanced and comfortable in terms of reporting or code organization.
You have to declare your test cases in the header file and in the runner but
this is a limitation of the C language. The cmockery framework from
Google makes the most of what is technically possible for comfortable
testing in C. But even if the reporting is not ideal you are always informed
about which test fails and in which line.
Other languages have unit testing frameworks as well. jUnit for Java,
pyUnit for Python and so on. The principles of unit testing are exactly the
same �– running small pieces of your application in isolation.
QA (Quality Assurance) testing and regression testing are separate big
topic in themselves, and are handled differently. Good unit tests should be
fast so they don�’t slow down the compilation process on the project. But
sometimes you want to do stress testing for your code �– maybe execute
something millions of times, check memory allocation for leaks, create the
test for a recently fixed bug to avoid its reintroduction later and so on.
These kinds of tests can take a long time and it�’s not comfortable to run
them on every project build. Here, QA and regression testing step onto the
scene. It�’s also quite an interesting topic and I will try to cover it soon as
well.

#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmockery.h>

void mult_simple_test(void **state) {
 assert_int_equal(91, mult(7, 13));
}

void mult_zero_test(void **state) {
 assert_int_equal(0, mult(0, 7));
 assert_int_equal(0, mult(7, 0));
}

void mult_all_test(void **state) {
 int a, b;
 for (a = 0; a < 1000; ++a)
 for (b = 0; b < 1000; ++b)
 assert_int_equal(a * b, mult(a, b));
}

Lis
tin

g 1
2

#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmockery.h>
#include "mult_test.h"

int main(int argc, char* argv[]) {
 const UnitTest tests[] = {
 unit_test(mult_simple_test),
 unit_test(mult_zero_test),
 unit_test(mult_all_test),
 };
 return run_tests(tests);
}

Lis
tin

g 1
3

mult_simple_test: Starting test
mult_simple_test: Test completed successfully.
mult_zero_test: Starting test
mult_zero_test: Test completed successfully.
mult_all_test: Starting test
0xbe3e8 != 0xbe3e9
ERROR: mult_test.c:19 Failure!
mult_all_test: Test failed.
1 out of 3 tests failed!
 mult_all_test

Lis
tin

g 1
4

#include "mult.h"

int mult(int a, int b) {
 int r = 0;
 if (!a || !b) return 0;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Lis
tin

g 1
5

